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1. The Science and Application Target 
Mineral dust emitted from the surface (Fig. 1) impacts climate variability and change 

through direct radiative forcing (RF) over arid and semi-arid regions around the globe.  This is 
where shifts in climate have a significant impact on agriculture, precipitation, and desert 
encroachment. Dust particles contribute to both positive and negative forcing, depending on the 
composition of the particles (Fig. 2) which is a function of the mineralogy of source regions.  
Dust particles are also the primary source of ice nuclei (Atkinson et al., 2013; Cziczo et al., 
2013), and thus can modify cloud properties.  Desert dust particles are also the primary source of 
iron deposition to the ocean (Jickells et al., 2005).  However, for all these interactions, not all 
types of dust are equally important, and the chemical composition or mineralogy is of primary 
importance (Atkinson et al., 2013; Shi et al., 2012; Sokolik and Toon, 1999).  For direct radiative 
interactions in the atmosphere and when deposited on snow, the amount of iron, especially 
changes the absorption, and the climate impact (e.g. Sokolik and Toon, 1999; Painter et al., 
2007; Scanza et al., 2015).  Iron and phosphorus deposition modulates ocean biogeochemistry, 
and can be just as important as changes in climate for changing ocean productivity (Mahowald et 
al., 2011).  The mineralogy matters greatly for these impacts, as some iron species are more 
bioavailable in the ocean than other iron (Shi et al., 2012).  Because desert dust is sensitive to 
climate and land use, anthropogenic changes in dust sources can be forcing change in both 
climate and biogeochemistry (e.g. Ginoux et al., 2012; Mahowald et al., 2010).  Currently poor 
knowledge of mineral dust source composition (MDSC) limits the skill of Earth System models 
to predict dust climate and biogeochemistry impacts around the globe.  
 The current challenge is that the MDSC is assumed to relate to soil types provided by a 
global atlas (e.g., Claquin et al., 1999). This relation is based upon massive extrapolation due to 
limited sampling of soil mineralogy (<5000 samples) and neglects mineral variations between 
regions of identical soil type. Also, these measurements are based on wet sedimentation (“wet 
sieving”) techniques that disturb the soil samples, breaking the aggregates that are found in the 
original, undispersed soil that is subject to wind erosion. New, global observations of dust source 
and adjacent lands are need to provide direct and comprehensive measurements of the 
mineralogy of dust source regions, targeting at least the ten key minerals identified by the Earth 
system modeling community (Claquin et al., 1999; Nickovic et al., 2012; Journet et al., 2014). 
 Earth system models in use today are ready to accept and in need of accurate MDSC.  For 
example, NASA GISS ModelE2 (Miller et al. 2006; Schmidt et al., 2014) and NCAR CESM 
(Hurrell et al, 2013), with the embedded atmospheric model CAM5 (Neale et al., 2012, 
Mahowald et al., 2006). Both models contribute to the Climate Model Inter comparison Projects 
(CMIP), used in the Assessment reports of the IPCC.  Comparisons of current model predictions 
with in situ dust sampling do not match well (Scanza et al., 2015, Perlwitz et al., 2015a, b), 
underscoring the need for comprehensive and direct measurement of MDSC. Improved 
representations of emitted mineral dust aerosol composition would lead to more accurate 
predictions of AOD, RF, ice nuclei, dust deposition and related impacts around the globe.  
Furthermore, these measurements would improve studies of the feedback between climate 
change and the evolution of surface conditions (e.g., desert encroachment and greening) under 
future climate scenarios. 
 Beyond global impacts, the arid regions of the Earth are vulnerable to small shifts in 
climate and the related impacts of surface emitted mineral dust.  For example, the largest 
changes in precipitation recorded in the 20th Century have occurred over the Sahel region of 
North Africa (e.g. Stocker et al., 2013). Climate modeling demonstrates that the incorporation of 
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realistic mineral dust models improves predictions of temperature and precipitation changes over 
arid regions (e.g., Miller and Tegen, 1998; Yoshioka et al., 2007; Mahowald et al., 2010) along 
with weather forecasts (Perez et al. 2006), and the impact of dust is a function of the mineralogy 
and spatial distribution of soils in dust source regions (e.g. Perlwitz et al., 2001; Ginoux et al., 
2012; Ward et al., 2014; Miller et al., 2014; Scanza et al., 2015).  
 The MDSC science target presented here is addressed with two Quantified Earth Science 
Objectives (QESOs).  QESO1 is to (i) accurately measure the type and abundance of key surface 
minerals available for dust emission over 28×106 km2 of the surface (arid and semi-arid regions), 
(ii) demonstrate improved model performance, and (iii) update climate RF predictions, cloud 
properties and ocean biogeochemistry in dust impacted regions of the Earth.  Historic data 
indicate that natural (non-anthropogenic) dust loading has almost doubled over the 20th century, 
and this trend is expected to continue into the future (Mahowald et al. 2010, Mulitza et al. 2010), 
due at least partly to direct land use (Ginoux et al., 2012).  This motivates QESO2 that is to 
measure surface composition of agricultural and sparsely-vegetated lands bordering arid regions 
(>4 × 106 km2) to predict the evolution of new dust sources, and related Earth system impacts, 
under future climate scenarios. 
 In addition to direct climate forcing, mineral dust affects indirect RF through cloud 
formation as well as changes in the albedo and melting of snow/ice.  Based on their chemistry, 
the minerals in dust react and modify tropospheric photochemistry and acidic deposition 
(Dentener et al., 1996; Martin et al., 2003). Mineral dust aerosols affect ocean and terrestrial 
ecosystem biogeochemical cycling by supplying limiting nutrients such as iron and phosphorus 
(Jickells et al., 2005). In populated regions, mineral dust is a natural hazard that affects human 
health and safety.  Additional Earth system processes impacted by mineral dust emitted from the 
Earth’s surface are given in Table 1. 
 This MDSC target advances the goals of NASA climate research and the IPCC (Myhre et 
al., 2013) as well as advancing elements of atmospheric composition and Earth surface research 
by characterizing the sources of radiatively active mineral dust emitted from the Earth’s surface, 
understanding and predicting the impact of mineral dust on regional and global RF, and 
advancing the capabilities of Earth system modeling. 
 
2. The geophysical variables 

To achieve the science target, the type and relative abundance of the key dust source 
minerals need to be measured comprehensively for the arid and semi-arid regions of the Earth.  
This now feasible with modern spectroscopic measurements (Fig. 3).  These new measurements 
would be incorporated into Earth system models that require consideration of the mineralogy of 
dust source regions (e.g., Claquin et al., 1999; Nickovic et al., 2012; Journet et al., 2014), 
saltation and emission of dust particles to the atmosphere (e.g., Zender et al., 2003a, b; Okin, 
2005; Kok et al., 2014a, b; Perlwitz et al., 2015a, b), transport and dispersion of dust plumes 
(Knippertz and Todd, 2012; Choobari et al., 2014, and references therein), radiative properties of 
dust particles (e.g., Sokolik and Toon, 1999; Miller et al., 2006; Albani et al., 2014; Scanza et al., 
2015; ) and, finally, deposition of the dust (Zender at al., 2003a).   

At least two leading Earth system modeling frameworks are readily available to accept 
these measurements: (1) NASA/GISS ModelE2 (Miller et al. 2006; Schmidt et al., 2014) and (2) 
NCAR CESM (Hurrell et al, 2013), with the embedded atmospheric model CAM5 (Neale et al., 
2012, Mahowald et al., 2006). Both models contribute to the Climate Model Inter comparison 
Projects (CMIP), coordinated by the IPCC. The MDSC products can initialize dust emission 
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models that in-corporate physically-based processes to estimate the composition and mass 
fraction of dust particles emitted into the atmosphere.   
 To achieve the two QESOs for this science target, NASA GISS ModelE2 and NCAR 
CESM would be initialized based on the new MDSC product. Hindcasts of total AOD could then 
be compared with archives of AOD derived from satellite and ground-based observations (e.g., 
Li et al., 2004; Patadia et al., 2009; Ginoux et al., 2012; Scanza et al. 2015). Further validation 
tests can compare hindcasts of dust deposition to in situ deposition records (Scanza et al., 2015, 
Perl-witz et al., 2015b).  Following this validation phase, the models would be run to quantify the 
improved predictions of regional and global RF with incorporation of these new direct MDSC 
measurements. 
 To evaluate the impact on predictions of new dust source regions (QESO2), such as lands 
at risk for desert encroachment, the initial surface composition can be based on these new MDSC 
products.  This would allow modelers to evaluate range of IPCC climate scenarios as well as 
various scenarios for land use change (Ginoux et al. 2012; Ward et al. 2014, Seager et al., 2007, 
2014; Mahowald 2007), and analyze to assess future RF impacts regionally and globally. 
Regionally, dust RF can dominate RF and significantly impact regional climate including 
precipitation (Miller et al., 2014, Yoshioka et al., 2007, Miller et al., 2004). 
 
3. Key requirements on the measurement 

To achieve the science target, comprehensive measurement of ten key minerals identified 
by the Earth system modeling community (Claquin et al., 1999; Nickovic et al., 2012; Journet et 
al., 2014) is required. These are hematite, goethite, illite, vermiculite, calcite, dolomite, 
montmorillonite, kaolinite, chlorite, and gypsum each with a unique spectral signature tied to its 
composition (Fig. 4).  The modeling of mineral dust is based on the fractional abundance of 
component minerals, and changes in the abundance of individual components will constrain the 
abundance of the remaining components, such as quartz and feldspar.  Currently, remote 
spectroscopic mapping of dust source regions is the only feasible path to measure the occurrence 
relative abundance of the key dust source minerals with sufficient detail and global arid land 
coverage.  Complete measurement of the spectral range from 410 to 2450 nm is required to 
capture the diagnostic absorptions of the minerals (Fig. 4).  Spectral sampling of ≤15 nm, 
response function width ≤20 nm, and ≤5% spectral calibration uncertainty are required to 
discriminate overlapping absorption features (Swayze et al., 2003).  This spectral range captures 
the atmospheric features used in the atmospheric correction (Thompson et al., 2015), aerosol and 
cloud screening (Thompson et al. 2014, 2016).  To screen for non-dust source surface materials, 
the spectral features of green and non-photosynthetic vegetation are captured in this range as 
well. 
 To encompass the brightness of arid dust source regions, the radiometric range of the 
spectroscopic measurement is required to extend to ≥80% of a Lambertian reflectance target 
under direct illumination. Radiometric calibration of ≤10% uncertainty enables radiative transfer 
model-based atmospheric correction.  The required precision of the measurements is established 
to provide sensitivity to 1% changes in the depth of absorption features in mineral spectra (Fig. 
5).  This sensitivity can be enhanced with optional aggregation from the nominal spatial 
sampling of 30 m to 100 m sampling. 
 A spatial sampling ≤100 m is required to characterize surface mineralogy in small fallow 
agricultural fields and exposed areas, and initialize predictions of the evolution of dust sources in 
regions vulnerable to desert encroachment (QESO2). Additionally, this spatial scale provides the 
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detail for accurate aggregation and abundance estimation for the constraint of the dust mission 
elements in the Earth system models. 
 The coverage requirement for the science target is to measure the required mineralogy for 
≥80% of the arid dust source and adjacent regions of the Earth identified by the WMO (Fig. 6) 
corresponding to 28×106 km2 of the terrestrial surface.  Based on related land cover 
classifications, an additional area of 4×106 km2 is required for QESO2 corresponding to adjacent 
areas at risk for desertification that could potentially become future mineral dust sources. 
 The key requirements to achieve the science target and related QESOs are summarized in 
in the Science Traceability Matrix (Table 2). 
 
4. Affordability 

The measurements can be achieved affordably in the decadal timeframe, due to 
investments in response to global terrestrial/coastal coverage missions outlined in the 2007 NRC 
Decadal Survey (NRC 2007) and NRC Landsat and Beyond report (NRC 2013) and other 
initiatives.  These measurements would build on a legacy of airborne instruments such as AIS 
(Vane et al, 1984), AVIRIS (Green et al., 1998), and AVIRIS-NG (Hamlin et al., 2011), and 
space-based instruments such as NIMS (Carlson et al., 1992), VIMS (Brown et al., 2004), Deep 
Impact (Hampton et al., 2005), CRISM (Murchie et al., 2007), EO-1 Hyperion (Ungar et al, 
2003, Middleton et al., 2013), M3 (Green et al., 2011) and MISE, the imaging spectrometer now 
being developed for NASA’s Europa mission.  
 NASA-guided engineering studies in 2014 and 2015 show that a wide swath VSWIR 
(380 to 2510 nm @ ≤10 nm sampling) (Fig. 7) imaging spectrometer instrument with a 185 km 
swath, 30 m spatial sampling and 16 day revisit with high signal-to-noise ratio and the required 
spectroscopic uniformity can be implemented affordably for a three year mission with mass (98 
kg), power (112 W), and volume compatible with a Pegasus class launch or rideshare (Fig. 8).    
 The key for this measurement is an optically fast spectrometer providing high SNR and a 
design that can accommodate the full spectral and spatial ranges (Mouroulis et al., 2016).   A 
scalable prototype F/1.8 full VSWIR spectrometer (van Gorp et al., 2014) has been developed, 
aligned, and is being qualified (Fig. 9).   
 Data rate and volume challenges have been addressed by development and testing of a 
lossless compression algorithm for spectral measurements (Klimesh et al., 2006, Aranki et al., 
1009ab, Keymeulen et al., 2014).  This algorithm is now a CCSDS standard (CCSDS 2015).  
With compression and the current Ka band downlink offered by KSAT and others, 
measurements for all dust source and potential dust source regions can be downlinked (Fig. 10).   
 Algorithms for calibration (Green et al., 1998) and atmospheric correction (Gao et al., 
1993, 2009, Thompson et al., 2014, 2016) of large diverse data sets have been benchmarked as 
part of the HyspIRI preparatory campaign (Lee et al., 2015) as well as for the AVIRIS-NG India 
and Greenland campaigns and elsewhere. To enhance affordability and accelerate measurement 
availability, there is good potential for international partnerships.  Efficient and accurate software 
for estimating surface mineralogy, such as the Tetracorder method shown in Fig. 3 (Clark et al., 
2003), has been refined and field-validated over decades of use in airborne and planetary science 
applications. 
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Figures 
 

 
Figure 1.  Modeling the role of mineral dust in RF requires consideration of the generation, 
emission, radiative properties, and deposition of dust particles. The composition of dust aerosol 
can be traced back to the source region on the surface. Dust particles can reflect (white) or 
absorb (red) solar radiation, based on the composition of the particles. In addition to direct 
radiative forcing, mineral dust impacts the Earth system by modifying cloud properties, 
enhancing snow/ice melt, changing precipitation patterns, modifying atmospheric composition, 
supplying nutrients to terrestrial and aquatic ecosystems as well as direct societal impacts to air 
quality, visibility, and respiratory health. 
 

 
Figure 2.  (left) Mineral composition is a key control of SSA, which describes how particles 
scatter and absorb energy.  Iron-bearing minerals (represented here by hematite) are strong 
absorbers (SSA < 1.0) in the solar spectral region, while clay minerals (illite, kaolinite, and 
montmorillonite) are strong scatters (SSA ≈ 1.0). Particle radius is 0.5 mm.  Figure modified 
from Sokolik and Toon (1999). (right) The relative abundance of hematite in dust source regions 
has a significant impact on dust-related radiative forcing.  A 2% increase in the hematite content 
of soils results in increases of 130% and 100% in simulations of global forcing (solid line) and 
regional forcing over North Africa (broken line), respectively.  Modeling results courtesy of R. 
Scanza, Cornell. 
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Figure 3.  (left) Example spectroscopic mineral composition maps of the Salton Sea dust source 
region in California from the NASA HyspIRI preparatory airborne campaign. The strength and 
shape of the absorption is used to identify the mineral and estimate the abundance. The residuals 
of the spectral fit provide the basis for certainty estimation and are reported together with the 
mineral products. (right)  To address this science target, the products can be aggregated and input 
into dust emission models that estimate the mass fractions of dust particles emitted into the 
atmosphere to address the QESOs and advance modeling of Earth’s dust cycle. 
 
 

 
 
Figure 4.  Measured reflectance spectra of the ten key dust source minerals showing the 
absorption features in the range from 450 to 2450 nm.  These absorption features tied to 
composition are the basis for achieving this science target with imaging spectroscopy 
measurements of the arid land regions of the Earth. 
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Figure 5.  (left) Radiance spectrum and reference signal-to-noise ratio that enables measurement 
of absorption features for mineral source composition and abundance estimation.  (right) Noise 
equivalent change in absorption sensitivity for the ten key minerals.  Sensitivity to water vapor is 
also assessed in relation to retrieval for atmospheric correction. 
 

 
Figure 6.  Current dust source regions of the Earth identified by the World Meteorological 
Organization. 
 
 

 
Figure 7. (left) Contiguous spectral coverage from 380 to 2510 nm showing overlap with 
Landsat and Sentinal-2 bands. (right) Signal-to-noise ratio for 30 m sampling with F/1.8 VSWIR 
Dyson imaging spectrometer for a range of reference radiances. 
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Figure 8.  (left) Opto-mechanical configuration with one telescope feeding two field split wide 
swath F/1.8 VSWIR Dyson spectrometer providing 185 km swath and 30 m sampling. (center) 
Imaging spectrometer with spacecraft configured for launch in a Pegasus shroud for an orbit of 
429 km altitude, 97.14 inclination to provide 16 day revisit for three years.  (right) Orbital 
altitude and repeat options showing an altitude of 429 km with a fueled spacecraft supports the 
three year mission with the affordable Pegasus launch or rideshare.  Higher orbits are viable with 
a larger launch vehicle. 
 

 
Figure 9.  Design of a wide swath F/1.8 VSWIR Dyson covering the spectral range from 380 to 
2510.  (right) Dyson imaging spectrometer in qualification that uses a full spectral range 
HgCdTe detector array. 

 
Figure 10.  (left) Global illuminated surface coverage every 16 days.  (right) On-board data 
storage usage for illuminated terrestrial/coastal regions with downlink using Ka Band (<900 
mb/s) to KSAT Svalbard and Troll stations.  Oceans and ice sheets can be spatially averaged for 
downlink. 
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Tables 
 
Table 1. Mineral dust impacts a broad range of physical and chemical Earth system processes. 

 
 
Table 2.  Flow of key requirements from science target to objective to measurement approach. 
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